
CS4815 Week07 Lab Exercise

Lab Objective: We will take a look at a program for drawing Bézier curves, as considered
in lectures recently. We will modify the interface to permit repositioning of the plot and
mouse-based zooming.

Here’s a quick summary of the tasks:

¶ Copy the main source file for this week’s lab from the class directory ~cs4815/labs/week07

· Study the workings of the program as it currently stands

¸ Modify the program so that we can use the mouse to a) reposition the plot around,
and b) zoom in/out on regions of the curve

¹ Submit your completed program using the handin command
handin -m cs4815 -p w07

From talking to people in my office I notice that a lot of people are still
compiling their files from the command-line using something along the
lines of

g++ XXX.cc -l GL -l GLU -l glut -o XXX

There is a lot of value in you continuing to do things this way as it rein-
forces in your minds what is happening in the compilation/build process.
However, at some point you may want to switch over the the easier make
and Makefile way of doing things.

Editorial Comment:

In Detail

¶ In last week’s lab many people asked about the location the zooming-in should be centered
around. In the context of a program for drawing a Bézier curve we will consider this issue
today.

Firstly, as always, create a new subdirectory in ~/cs4815/labs/week07. Now copy this
week’s lab files from ~cs4815/labs/week07 into the directory of yours. There are two

1

C++ files there, one for you to modify, bezier.cc, and one for you to use to help you with
this week’s task, viewer.cc.

They both have a main() function so this indicates that they are both to be compiled
into separate executables. Just like several times in the past they can be compiled with the
command template:

make viewer bezier

or, even simpler,
make

· Before getting down to study the Bézier curve drawing program you should run both of
them. Things to look at are:

• when running bezier note how the scaling responds to window resizing (look for the
Reshape callback for the code). Note how the viewport is set to a square of dimensions
given by the height of the window. The plot is then scaled according to this viewport
with the call to glOrtho2D() a few lines of code later.1 This means that windows that
are resized to have very large aspect ratio much of the plot will be hidden.

The roles of glOrtho2D() and glViewport() are a source of confusion for many.
Think of the former as defining the four sides of the clipping window in world
co-ordinates. The function glViewport() independently specifies how this will
look by specifying 1) where on the screen, and 2) what dimensions, the clipping
window should be drawn into. So this is a “physical” thing.

Viewport vs. Ortho:

This is unsatisfactory, but the fix to it may not be any better. In order to maintain the
plot in the window at all times the viewport’s dimensions (both) should be set to the
smaller of the width and height. Try making this change and play around with resizing
the window. It will fix the problem mentioned earlier but it can be disconcerting as
you drag the corner of the window around quickly.

• run viewer and manipulate the view by dragging the left button and middle buttons
around. That’s all there is to this program but you should follow the code back to
where the dragging is accomplished – search for GLUT_MOUSE_DOWN, etc. – because this
is what we will need for dragging our Bézier plot to reposition it.

The program is a demonstration of computing a Bézier curve on 4 points using samples
(“time steps”) of 0 to 999. That is, the value B(t), 0 ≤ t ≤ 1 is approximated by 1000

1In last week’s lab people implemented the zooming function by adjusting the dimensions of the viewport.
This was not the correct way to implement the zoom function. While the viewport does not have to match
exactly the dimensions of the window – just consider what we have described here – for this situation the
solution should be based around the glOrtho2D() function.

2

discrete values in this range. These 1000 values give rise to computing B(ti), 0 ≤ i ≤ 999
and ti = i/1000 and these are what get plotted. Rather than draw lines between adjacent
values these 1000 values are just plotted as points using their function plotPoint(). Notice
that when the curve gets very steep the smoothness falls off. If this was a line we could
sample along the x or y axes according to its slope; anti-aliasing effects could be used also
if it was a line we were drawing.

Remember from the lecture that the blending function is so named because B(t) is a
blend of the original points with respect to the parameter t and this can be seen in the
function computeBezPt() where the blended point is built up from an appropriate multiple
of each of the 4 control points. This “appropriate multiple” is such that the kth point, pk,
contributes (

n

k

)
tk(1 − t)n−kpk

The program will never win any awards for efficiency because practically all of the compu-
tation takes place every time a display event occurs. For example, such things as initialising
the array of control points and computing the binomial coefficients are all computed within
the function displayFcn(). On the other hand, it does recognise that the binomial co-

efficient values,
(
n
k

)
, are used over and over again and can be precomputed. The array C in

the function bezier() is initialised with all of these values that will be needed.

¸ The first part of the task is to add the ability to drag the plot around the window. The
idea here is to click down with the left button and by moving the mouse the plot should be
repositioned continuously ; releasing the mouse positions the plot in its final resting place.
Of course, this operation is more commonly known as dragging. This is implemented in the
viewer program and you should look carefully at the code there for ideas.

The second part of the assignment is to implement a zoom/unzoom facility. You should
reuse some of your code from Week06 to respond to ’z’ or ’Z’ keyboard events so that zooming
happens. If you didn’t get this working last week we can provide you with access to a sample
program for Week06.

The second part of the assignment is to implement a mouse-based zoom/unzoom facility.
My first thought on this was to use a double-click operation à la Google Maps. This would
allow you to zoom and recentre all in one operation. However, other than building up the
detection code one click at a time, there appears to be no easy to detect a double click in
OpenGL so we will not pursue that.

Instead, we will use the wheel mouse, a technique that also appears in other graphical
user interfaces. The idea is that by holding the control-key down and advancing the wheel
we should zoom in to the viewing area and, conversely, by holding the control-key down
and retracting the wheel we should zoom back out from the scene. There are two things
you will need to know for this. The first is that Linux treats each direction of the wheel on
the mouse almost like another button but since OpenGL doesn’t specifically handle wheel
mouse events you need to define a few extra macros in the spirit of the OpenGL API. So
you will need to put the following lines near the top of your program:

3

#if !defined(GLUT_WHEEL_UP)

define GLUT_WHEEL_UP 3

define GLUT_WHEEL_DOWN 4

#endif

In your mouse handling routine you can now say things like
if (button == GLUT_WHEEL_DOWN) Note that UP and DOWN as far as the wheel

is concerned has to do with scrolling up or down, not a press or release of a button.
The second thing you will need to consider is how to tell if the control-key is be-

ing pressed when, say, a GLUT_WHEEL_DOWN event occurs. The function you need here is
glutGetModifiers() whose return value can be tested against the constant GLUT_ACTIVE_CTRL
to tell if the control-key was held down when the mouse wheel event was detected.

¹ Using the handin command given at the top of the lab sheet please submit your lab
exercise by the usual deadline. A sliding scale of penalties will apply until the end of that
week.

4

